SQL-on-Hadoop Tutorial
VLDB 2015

SQL-on-Hadoop Tutorial

Presenters

Fatma Ozcan Daniel Abadi

IBM Research Yale University and
Teradata

IBM Big SQL
HadoopDB/Hadapt

Shivhath Babu

lppokratis Pandis
Duke University

Cloudera

Cloudera Impala Starfish

9/28/15

SQL-on-Hadoop Tutorial

Why SQL-on-Hadoop®@

®» People need to process data in parallel

» Hadoop is by far the leading open source parallel data
processing platform

» | ow costs of HDFS results in heavy usage

» Lots of data in Hadoop with appetite to process it

SQL-on-Hadoop Tutorial 9/28/15

MapReduce is not the answer

» MapReduce is a powerful primifive to do many kinds of
parallel data processing

» BUT

®» | iftle control of data flow

» Fqult tolerance guarantees not always necessary
» Simplicity leads to inefficiencies

» Does not inferface with existing analysis software
» |[ndustry has existing training in SQL

» SQL interface for Hadoop critical for mass adoption

SQL-on-Hadoop Tutorial 9/28/15

The database community knows how
to process dato

®» Decades of research in parallel database systems
» Efficient data flow
» | oad balancing in the face of skew
» Query optimization
» \ectorized processing
®» Dynamic compilation of query operators
» Co-processing of queries

Massive talent war between SQL-on-Hadoop
companies for members of database community

SQL-on-Hadoop Tutorial 9/28/15

SQL-on-Hadoop is hot a direct
Implementation of parallel DBMSs

®» | [ftle confrol of storage

» Most deployments must be over HDFS
» Append-only file system
» Must support many different storage formats
» Avro, Parquet, RCFiles, ORC, Sequence Files
®» | [ftle control of metadata management

» Optimizer may have limited access to stafistics

®» | [ttle confrol of resource management
®» YARN still in its infancy

SQL-on-Hadoop Tutorial

9/28/15

SQL-on-Hadoop is hot a direct
Implementation of parallel DBMSs

» Hadoop often used a data dump (swamp?<)

» Data often unclean, irregular, and unreliable

®» Data not necessarily relational

» HDFS does not enforce structure in the data

» Nested data stored as JSON extremely popular

» Scale larger than previous generation parallel database
systems

» Fault tolerance vs. query performance

» Most Hadoop components written in Java
» \Want to.play nicely with the entire Hadoop ecosystem:

Outline of Tutorial

® This session [13:30-15:00] » Second Session [15:30-17:00]
» SQL-on-Hadoop Technologies » SQL-on-Hadoop examples
»Storage »HaodoopDB/Hadapt
»Run-time engine »Presto
» Query optimization = mpala
»(Q&A »RigSQL
»SparkSQL

»Phoenix/Spice Machine
» Research directions
SQL-on-Hadoop Tutorial » Q&A 9/28/15

Storage

SQL-on-Hadoop Tutorial 9/28/15

Quick Look at HDFS

[NomeNode]

[DataNode]

[DataNode]

[DataNode]

L8

SQL-on-Hadoop Tutorial

HDFS s

» Good for
» Storing large files
» \Write once and read many times
»“Cheap” commodity hardware

» Not good for
» | ow-latency reads
» Short-circuit reads and HDFS caching help

® | arge amounts of small files
» Multiple writers

SQL-on-Hadoop Tutorial 9/28/15

IN-situ Data Processing

» HDFS as the data dump
» Store the data first, figure out what to do later

» NMost data arrive in text format

» Transform, cleanse the data
» Create data marts in columnar formats

» | ost of nested, JSON data

» Some SQL in data transformations, but mostly other
languages, such as Pig, Cascading, etc..

» Columnar formats are good for analytics

SQL-on-Hadoop Tutorial 9/28/15

SQL-on-Hadoop according to storage formats

» Most SQL-on-Hadoop systems do not control or own the data
» Hive, Impala, Presto, Big SQL, Spark SQL, Drill

: S } prQStO E;:ZJ":; Spor‘ll(\z ADRILL

» Other SQL-on-Hadoop systems tolerate HDFS data, but work
better with their own proprietary storage

» HadoopDB/Hadapt
» HAWQ), Actian Vortex, and HP Vertica

8 3 IQctian @

HAWQ hadapt

VERTION

SQL-on-Hadoop Tutorial 9/28/15

Query Processors with HDFES Native Formats

®» Only support native Hadoop formats with open-
source reader/writers

» Any Hadoop tool can generate their data
» Pig, Cascading and other ETL tools

®» They are more of a query processor than a database
» |[ndexing Is a challenge !l
®» No co-location of multiple tables

»Due to HDFS

SQL-on-Hadoop Tutorial 9/28/15

Systems with Proprietary Formats

» Almost all exploit some existing database systems
» They store their own binary format on HDFS

» Haodapt stores the data in a single node database,
like postgres

» Can exploit Postgres indexes
» HAWQ), Actian, HP Vertica, and Hadapt all conftrol

now tables are partitioned, and can support co-
ocated joins

SQL-on-Hadoop Tutorial 9/28/15

HDFS Native Formarts

» (CSV files are most common for ETL-like workloads

® | ofs of nested and complex data
» Arrays, structs, maps, collections

» [wO major columnar formats
» ORCFile
» Parquet

» Data serialization

» JSON and Avro
» Profocol buffers and Thrift

SQL-on-Hadoop Tutorial 9/28/15

Parquet

= PAX format, supporting nested data

= |[dea came from the Google's Dremel System

= Major contributors: Twitter & Cloudera

= Provides dictionary encoding and several compressions
= Preffered format for Impala, IBM Big SQL, and Drill

= Can use Thrift or Avro to describe the schema

= Fast compression = A natural schema
= Schema projection = Flexible
= Efficient encoding = Less duplication applying

denormalization

SQL-on-Hadoop Tutorial

17

9/28/15

Parguet, cont.

A table with N columns is split
iNnto M row groups.

The file metadata contains
the locations of all the
column metadata start
locations.

» Metadata is written after the

data to allow for single pass
writing.

» There are three types of
metadata: file metadata,
column (chunk) metadata
and page header metadata.

®» Row group metadata
includes

» Min-max values for skipping

SQL-on-Hadoop Tutorial 9/28/15

ORCFile

» Second generation, following RC file

» PAX formats with all data in a single file

» Hortfonworks is the major contributor, fogether with Microsoft
» Preferred format for Hive, and Presto

» SUppoOorts

» Dictionary encoding

®» Fast compression
» [jle, and stripe level metadata
» Stripe iIndexing for skipping
» Now metadata even includes bloom filters for point query lookups

SQL-on-Hadoop Tutorial 9/28/15

ORCEFile Layout

256 MB Stape

256 M8 Stipe

e 9/28/15

SQL-on-Hadoop Tutorial

Handling Updates in HDFS

» No updatesin HDFS

» Appends to HDFS files are supported,
but not clear how much they are
used in production

» Updates are collected in delta files

» At fhe fime of read delta and main
files are merged

» Special inputFormats

®» | azy compaction to merge delta
files and main files

» \When delta files reach a certain size

» Scheduled intervals

SQL-on-Hadoop Tutorial 9/28/15

SQL on NoSQL!

» Put a NoSQL solution on top of HDFS
» [or the record, you can avoid HDFS completely
» But, this is a SQL-on-Hadoop tutorial

» NoSQL solutions can provide CRUD at scale
» CRUD = Create, Read, Update, Delete

» And, then run SQL on ite
®» Sounds crazye Well, lets see

SQL-on-Hadoop Tutorial

9/28/15

HBase: The Hadoop Database

» Not HadoopDB, which we will see |later in the futorial
» HBase Is a data store built on top of HDFS based on Google Bigtable
» Data is logically organized into tables, rows, and columns

» Although, Key-Value storage principles are used at multiple points in the design

®» Columns are organized into Column Families (CF)
» Supports record-level CRUD, record-level lookup, random updates
®» Supports l[atency-sensitive operations

HBase Architecture

RegionServer RegionServer

HBase Architecture

The Hadoop

Ecosystem
i ETLTools 1 Bl Reporting '5" " RDBMS !

’c&; Pig (Data Flow) Hive (SQL) Sqoop

3 5

= 2

B ﬁ S

é HBase (Column DB) % HBase stores three types of files

=3 &2 on HDFS:

% §: « WALs

S * HFiles
* Links

cloudera

HBase Read and Write Paths

HTable

buftfer

client

HTable

client

Region

MemStore

flush

HFE1 le

HE1 le

lr'ead

RegionServer

Region

l\MnStore

HE1 le

HF1le

Write Ahead lLog

HFile Format

“Scanned
block”
section

Trailer

Data Block

Leaf index block / Bloom block

Data Block

. Leaf index block / Bloom block

Data Block

Intermediate Level Data Index Blocks (optional)

Traller fields

 Immutable
* Created on flush or compaction
« Sequential writes
* Read randomly or sequentially
 Datais in blocks
» HFile blocks are not HDFS blocks
» Default data block size == 64K
« Default index block size == 128K
« Default bloom filter block size
== 128K
* Use smaller block sizes for
faster random lookup
» Use larger block sizes for faster scans
« Compression is recommended
» Block encoding is recommended

Run-time Engine

SQL-on-Hadoop Tutorial

Design Decisions: Influencers

» | ow Latency
» High Throughput

» Degree of tolerance to faulfs

» Scalability in data size

» Scalabllity in cluster size

®» Resource elasticity

» Multi-tfenancy

» Fase of installation in existing environments

SQL-on-Hadoop Tutorial 9/28/15

Accepted across SQL-on-Hadoop Solutions

®» Pysh computation to data

» Columnar data formats

» \/ectorization

» Support for multiple data formats
» Support for UDFs

SQL-on-Hadoop Tutorial 9/28/15

Differences across SQL-on-Hadoop Solutions

» \What is the Lowest Common Execution Unit
» Jse of Push Vs. Pull

» (On the JVM or not

®» Fqult folerance: Intra-query or inter-query

» Support for multi-tenancy

SQL-on-Hadoop Tutorial 9/28/15

SQL on MapReduce

»Hjve
»[enzing

SQL-on-Hadoop Tutorial 9/28/15

Hive

Hive

Compller

Hive

HiveServer2

Executor

Map / Reduce | @)

Web Ul
Hadoop
a User issues SQL query IohTrackar Tscskker
9 Hive parses and plans query

a Query converted to Map/Reduce e EEEEE——
0 Map/Reduce run by Hadoop Data Node

Example: Joins In MapReduce

customer

order
" ca | o | quanmy
E T
— P Y
11013 599

i Jaoso

SELECT * FROM customer join order ON customer.id = order.cid;

Toner

Jessie Simonds 7
Lamers

2
10

2
5
.

Rodger

Clayton

Verona

{d: 11911, { first: Nick, last: Toner }}
{id: 11914, { first: Rodger, last: Clayton }}

{id: 11911, { first: Nick, last: Toner }}
{ cid: 4150, { price: 10.50, quantity: 3 }}

{cid: 4150, { price: 10.50, quantity: 3 }}

(cid: 11914, { price: 12.25, quantity: 27 }) {id: 11914, { first: Rodger, last: Clayton }}

{cid: 11914, {price: 12.25, quantity: 27 })

Identical keys shuffled to the same reducer. Join done reduce-side.

Limitations

®» Having a MapReduce Job as the Lowest Execution Unit
quickly becomes restrictive

» Query execution plans become MapReduce workflows

SQL-on-Hadoop Tutorial 9/28/15

MapReduce Workflows

DO, DO,
Datasefts o a
D1 D2) MapReduce Jobs

D3

D4
DS Dé
D7

Research Done to Address these Limitations

» On efficient joins in the MapReduce paradigm

®» On reducing the number of MapReduce jobs by
packing/collapsing the MapReduce workflow

» Horizontally
»Shared scans

» \Vertically
» Making using of static and dynamic partitioning
®» On efficient management of infermediate data

SQL-on-Hadoop Tutorial 9/28/15

From MapReduce to DAGS

» Dryad
»[c7

SQL-on-Hadoop Tutorial 9/28/15

Dryad: Dataflows as First-class Citizens

Channels

Input <

files \\ Stage Output

&

files

grep
==\
-, <7

/_,

Vertlces
(processes)

SQL-on-Hadoop Tutorial

9/28/15

Smart DAG Execution in Dryad

S S S S S S
: 1]
static
§19 #2° ho 430 430 42

1
rackw
IA #ZA #3A

dynamic

B0

T

SQL-on-Hadoop Tutorial

[tems

Channels

Finite streams of items

* distributed filesystem files
(persistent)

* SMB/NTFS files
(temporary)

* TCP pipes
(inter-machine)

* memory FIFOs
(intra-machine)

9/28/15

Tez: Inspired by Dryad and Powered by YARN

"\ Hive / HIVE-4660
- Let there be Tez

Agile Board

Tez is a new application framework built on Hadoop Yarn that can execute complex directed acyclic
graphs of general data processing tasks. Here's the project's page:
http://incubator.apache.org/projects/tez.html

The interesting thing about Tez from Hive's perspective is that it will over time allow us to overcome
inefficiencies in query processing due to having to express every algorithm in the map-reduce
paradigm.

The barrier to entry is pretty low as well: Tez can actually run unmodified MR jobs; But as a first step
we can without much trouble start using more of Tez' features by taking advantage of the MRR
pattern.

MRR simply means that there can be any number of reduce stages following a single map stage -
without having to write intermediate results to HDFS and re-read them in a new job. This is common
when queries require multiple shuffles on keys without correlation (e.g.: join - grp by - window
function - order by)

SQL-on-Hadoop Tutorial 9/28/15

» The Hadoop Community realized that
MapReduce cannot be the Lowest
Execution Unit for all data apps

®» Separated out the resource
management aspects from
application management

= YARN Is best seen as an Operating
System for Data Processing Apps

» Recall the 80s: Databases and
Operatfing Systems: Friends or Foes?

SQL-on-Hadoop Tutorial

Quick Detour on YARN

(ll |I\

YARN: Cluster Resource Management

\ J

9/28/15

An Example of What Tez Enables

SELECT gl.x, gl.avg, g2.cnt Tez avoids

FROM (SELECT a.x, AVERAGE (a.y) AS avg FROM a GROUP BY a.x) gl unnecessary writes
to HDFS

JOIN (SELECT b.x, COUNT (b.y) AS avg FROM b GROUP BY b.x) g2

ON (gl.x = g2.x)
ORDER BY avg:

Hive - MR Hive — Tez

GROUP b BY bx

GROUP BY x

GROUP a BY a.x
GROUP BY a.x
JOIN (a,b)
JOIN (a.b)
ORDER BY

ORDER BY

A Tez Slide on Tez

)\‘GW
U\

SQL-on-Hadoop Tutorial 9/28/15

Spark: A Ditferent Way to Look at a Dataflow

sc.textFile(hdfsPath) part- part- | part- | part- | por’r | part- |

.map(parselnput) 0 0 0 0 0

filter(subThreshold)

reduceByKey(tallyCount) ﬁm”_ ﬁm”_ | ﬁm”_ | ﬁmﬁ' | pOrT | ﬁm”_ |

.map(formatOutput)

saveAsTextFile(outPath) part- | | part- | part- | part- | part- | part- |
2 2 2 2 2
part- part- | part- | part- | par’r | part- |
3 3 3 3 3
RDDO RDDI RDD2 RDD3 RDD4 HDFS

map filer reduceBykey map saveAsTexiFile

Spark: A D|fferen’r Way to Lool< CIT ® Do’raﬂow

sc.textFile(hdfsPath) part
.map(parselnput)
filter(subThreshold) oart-
.reduceByKey(’rOIIyCoun’r) 1
.map(formatOutput) f -y
saveAsTextFile(outPath) | o
part-
3
RDDO

.

map filter reduceBykey map soveAsTex’ane

Spark: A D|fferen’r Way to Lool< CIT ® Do’raﬂow

--
. .

' Stage0 . Stage 1

o&i ______ [__[______ Lgoc.ﬂg _______ L [__ | 1

. A\ : |

c.textFile(hdfsPath) | Part Ly part |y part- g part- |y port Ly bart- |

. & \og \I

filter(subThreshold) S| port- || part- || part- | Ml part- || part- || part- |

reduceByKey(tallyCount) 1|] 1 1 ! 3:;,] 1 1 !

.mop(formo_l_ou_l_pu_l_) o$_:=:::I:J:=:::=J::I=:::=::I--\I°%. ::::::l::I:::::::I::E::::::E_.\I

: 7| part- art- art- | part- art- art- !

saveAsTextFile(outPath) ‘2’ S FQD B FQD] S - S s FQD i
|

l RDDO { NRDDl N ‘RDDQ-I l RDDJ ‘ RDDA4 ‘ [HDFS [

map filter reduceBykey soveAsTex’rFlle

Spark: A D|fferen’r Way to Lool< CIT a Dataflow

--

Stage 0 Stage 1
,-’I || || | -] || ||
. o
sc.textFile (hdfsPath) 5 80”‘ L 80”‘ > 80”' —» '80”‘ —» 80”‘ —» 80”‘
.map(parselnput) L |
. ("
filter(subThreshold) 5| |part- | | part- | |part- | | part- | | part- | | part-
Q
reduceByKey(tallyCountk | ! 1 1 1 1 1
-map(formatOutput) 0 i art art art art art art
saveAslextFile(outPath) & g B FQD —> S —> FQD —> |:2> —> FQD
\-
— : :
3 part- part- part- part- part- part-
gz [Tz [Tz [z [3 [73

--

map filter reduceBykey map soveAsTex’rFlle

Spark: A Ditferent Way to Look at a Dataflow

take :

SQL-on-Hadoop Tutorial 9/28/15

Fault Tolerance

SQL-on-Hadoop Tutorial

MapReduce Fault Tolerance

Map
& Reduce
\Yle]e) ﬂ\‘/
\‘V"\
)ﬁ’#‘% Reduce
HDES MOD %{‘k&
/,b“‘;

(R
Map 4‘
//’\\ Reduce

Reduce

SQL-on-Hadoop Tutorial 9/28/15

MapReduce Fault Tolerance

Yle]e Map
. K S \\\ Reduce
‘ a ‘ h . ﬁ o f/
M W\ \
. %‘; Reduce — §&:};’> Reduce

4 f 0
HDFS Map %&H HDFS \Ylee g’?&"\\
/“A“; Reduce /“A“; Reduce
Map 4"{\ Map 4"‘\\
//' Reduce //’ Reduce

Map Map

SQL-on-Hadoop Tutorial 9/28/15

MapReduce Fault Tolerance

Map Map
\\’ F 2 & Reduce
Map %“‘l//h A~ Map %\"/
H‘\’y} Reduce &'}7} Reduce
Map 2N ' HDFS RN
ap g@,o'o Map g&,w
R AN
"‘A“; Reduce (A“
Map S \ ole "“

/1 m—
N ﬁ Reduce //’\\ Reduce

/

Reduce

SQL-on-Hadoop Tutorial 9/28/15

MapReduce Fault Tolerance

Map
& Reduce
\Yle]e) ﬂ\‘/
\‘V"\
)ﬁ’#‘% Reduce
HDES MOD %{‘k&
/,b“‘;

(R
Map 4‘
//’\\ Reduce

Reduce

SQL-on-Hadoop Tutorial 9/28/15

MapReduce Fault Tolerance

Mop&\\' Reduce
’

Map
» Reduce % \
Map %\"H N 7
)&’Xz% Reduce | ‘ A \

s
)Q#V Reduce

i
X \
HDFS Map g'?)%&\ HDFS Map g'%:x\
/“A“; Reduce /“A“; Reduce
Map 4"{\ Map 4"‘\\
//' Reduce //’ Reduce

Map Map

SQL-on-Hadoop Tutorial

9/28/15

MapReduce Fault Tolerance

Map
& Reduce
v N
)gzzz% Reduce
A

//’*\ Reduce

Reduce
Map

SQL-on-Hadoop Tutorial 9/28/15

Fault Tolerance

Percentage Slowdown

200
180
160
140
120
100
80
60
40
20

O Traditional
DBMS

B MapReduce

e —

Fault tolerance

Slowdown tolerance

« SELECT sourcelP,
SUM(adRevenue)
FROM UserVisits
GROUP BY sourcelP

* Node fails (or slows down
by factor of 2) in the
middle of query

9/28/15

Downsides of MapReduce Fault
Tolerance

Map output Reduce output
7 written to disk written to HDFS

&

\
N

9/28/15

SQL-on-Hadoop Tutorial

Spark RDDs

® Stores infermediate results in memory rather than disk
» Advantage: Performance
» Disadvantage: Memory requirements

SQL-on-Hadoop Tutorial 9/28/15

Resource Management

SQL-on-Hadoop Tutorial

Resource Management

» (At least) Two dimension problem:
1. RM across ditferent frameworks
» Jsually not a dedicated cluster

»Shared across multiple frameworks
»ETl (MapReduce, Spark), Hbase
»SQL-on-Hadoop processing

2. RM across concurrent queries

SQL-on-Hadoop Tutorial 9/28/15

RM -- Across frameworks

» YARN — Yet Another Resource Negotiator

» Centralized, cluster-wide resource management
system

» Allows frameworks to share resources without
partitioning between them

» Designed for batch-mostly processing
» Not mature
» Not good for inferactive analyfics
®» Not meant for long running processes
» Approaches: Llama and Slider

SQL-on-Hadoop Tutorial

(|||||||||| ||||||||||| |||||||||| |||||||||| ﬂ\

\

YARN: Cluster Resource Management

J

9/28/15

RM -- LLAMA (low-latency application master)

»|ntroduced by Cloudera
»| | AMA acts as a proxy between Impala and YARN

» Mitigates some of the batch-centric design aspects of
YARN:

® High resource acquisition latency -> solves via resource caching
®Resource request is iImmutable -> solves via expansion request
®Resource allocation is incremental -> solves via gang scheduling

RM -- Apache Slider

» Slider allows running non-YARN enabled applications on YARN

» Without having to write your own custom Application Master App Mgmt

Operations App Operations
» Existing applications are packaged as Slider applications
®» Encapsulates a set of one or more application components or roles i i
» Deployed by Slider, runs in containers across a YARN cluster G I l !

» Pre-built packages for HBase, Accumulo, Storm, and
jmemcached

App Component Instance

» Packages need to be custom built for other applications

» Some notable Slider features
» Applications can be stopped and started later - state is persisted
» Container failures are automatically detected by Slider and
restarted

64

Query Optimization

SQL-on-Hadoop Tutorial

Some Technigues We Know and Love
Are not Directly Applicable

. » Databases own their storage
d ﬂdeXlﬂg SQL-on-Hadoop systems do

= /0ne-maps .
» Co-located joins

» Metadata management is
tricky

» Data inserted/loaded without

» Query rewr”es SQL system knowledge
» No co-location of related
» Cost-based tables
PR : » HDFS is for most practical
OpTIFﬂlZOTIOn purposes, read-only

SQL-on-Hadoop Tutorial 9/28/15

/O Elimination for HDFS Data: Partition-level

» Hive Partition tables maintain metadata values as one folder/

directory in HDFS, per distinct value:

» Example: PARTITIONED BY (country STRING, year INT, month INT, day INT) ;

» Folder/Directory created for country=US/year=2012/month=12/day=22

» Partifioning only logical, not physical
» Partition pruning eliminates reading files that are not needed

» Almost all SQL-on-Hadoop offerings support this

» Hive, Impala, SparkSQL, IBM BigSQL,

SQL-on-Hadoop Tutorial 9/28/15

/O Elimination for HDFS Data: Rowblock-level

» ORCEFile broken into Stripes (250MB default)

» |ndex with Min/Max values stored for each Column

» Data is a “stream” of columns
» Bloom filters for each stripe in ORCFile allow fast lookups
®» Parquet also supports min/max values

» \Works well when data is sorted, not very effective otherwise

SQL-on-Hadoop Tutorial 9/28/15

Quick look at query optimizers

» TWO types of optimization
» | ogical fransformations to fransform query into equivalent but simpler form

» Cost-based enumeration of alternative execution plans
®» Most systems support the first one

» Cost-based optimization depends on good stafistics and a good
model of the execution environment

» Without controlling data storage, statistics are “gestimates”

SQL-on-Hadoop Tutorial 9/28/15

Query Rewrite

» Selection/projection pushdown

» Nested SQL queries require more sophisticated rewrites,
such as decorrelation

» New systems all have rewrites but lack complex
decorrelation and subqguery optimization ones

» Hive, Impala, Presto, Spark SQL

» Systems that leverage mature DB technology offer more
sophisticated rewrite engines

= [BM SQL, Hadapt, HP Vertica

SQL-on-Hadoop Tutorial 9/28/15

Cost-based Optimization

» Hive analyze table collects basic statistics

» Column value distributions, min-max, no-of-distinct values

» No control of data - data changes without the systems’
knowledge

» Multi-tfenant system makes it harder to build a cost
mode|

» More complex system behavior

» More adaptive query processing is needed

SQL-on-Hadoop Tutorial 9/28/15

Co-located joins

» Co-partitioning two tables on the join key enables local joins

s——
[) FileA []FileB — | = |
[)FileC []FieD J]

> Files A & B are co-located
» Files C & D are co-located

» HDFS default block placement policy scatters blocks in the
cluster

» Actian Vortex changes HDFS default block placement to
enforce co-located joins

SQL-on-Hadoop Tutorial 9/28/15

Outline of Tutorial

» » Second Session [15:30-17:00]

» » SQL-on-Hadoop examples
» »HaodoopDB/Hadapt
» »Presto
» = |mpala
» »RigSQL
»SparkSQL
»Phoenix/Spice Machine

®» Research directions
SQL-on-Hadoop Tutorial » Q &A 9/28/15

HadoopDB

» First of avalanche of SQL-on-Hadoop solutions to claim 100x faster than Hive (on
certain types of queries)

» Used Hadoop MapReduce to coordinate execution of multiple independent
(typically single node, open source) database systems

» Maintained MapReduce’s fault tolerance
» Sped up single-node processing via leveraging database performance optimizations:
» Compression
» \ectorization
» Partitioning
» Column-orientation
» Query optimization
» Broadcast joins
» Fexible query interface (both SQL and MapReduce)

HadoopDB Architecture

MapReduce Job

MapReduce
Job
Hadoop core
. Ny
I l\flaster node MapReduce
: HDFS Framework
: [NameNode] { JobTracker]
|
|
| InputFormat Implementations
|
|
|
| PN
o o ———_——_—— e Yl — — — s
Task with
InputFormat
Node 1~~~ — " madz > T T T T K

[TaskTracker] TaskTracker

| | |
| | I
| | I
| | |
| | |
)
| | |
| | |

SQL Query

TaskTracker

- DataNode

HadoopDB SMS Planner

Hive

File Sink Operator

t

Select Operator
dummy

t

Group By Operator
re-sum by year

Reduce Sink Operator
partition by year

t

Group By Operator
sum revenue

t

Select Operator
Year, revenue

?

.

Table Scan Operator
sales

J

SMS

File Sink Operator

[y

Select Operator
dummy

4

Group By Operator
rc sum by ycar

—————— .

Reduce Sink Operator
partition by year

A

Table Scan Operator
SQL query

SELECT YEAR(saleDate), SUM(revenue) FROM sales GROUP BY YEAR(saleDate);

HadoopDB History

» Pgper published in 2009

» Company founded in 2010 (Hadapt) to commercialize
HadoopDB

» Added support for search in 2011 (for major insurance
customer)

» Added JSON support in 2012
» Added intferactive query engine in 2013
» Acquired by Teradata in 2014

SQL-on-Hadoop Tutorial 9/28/15

Teradata Unified Data Architecture: QueryGrid

-
Marketing
Executives

-3
Operational
Systems

P
Customers
& Partners

Frontline
Workers

Business

P
Data
Scientists

i
Engineers &
Programmers

TERADATA OR ASTER DATABASE

TERADATA QUERYGRID

PUSH DOWN / REMOTE PROCESSING

$ o

'DATA PLATFORM |

HADOOP OR
TERADATA

$-

INTEGRATED DATA

WAREHOUSE

TERADATA
DATABASE

$

DISCOVERY
PLATFORM

PS o
o
®e
ASTER
DATABASE

‘ SQL, NOsQL ‘ VARIOUS
D B

OTHER
DATABASES

ORACILE,

L MONGODSB, ETC P

R, PERL, RUBY...
& J

COMPUTE
CLUSTERS

——

SAS, PYTHON,

Remote Processing On Hadoop

»Query through
Teradata

MOVE MANAGE ACCESS = | eaves of query plan

sent to SQL-on-Hadoop

INTEGRATED DATA WAREHOUSE e eﬂglne

B @ B »Results returned to
‘ — Teradata

- TERADATA DATABASE -

e » Additional query

Audio
and Video

=ql TERADATA processing done in
Machine DATABASE
Logs INTEGRATED DISCOVERY Math Teradata

HORTONWORKS PLATFORM and Stats

»Final results sent back
e to application/user

_:9

Text

Web and
Social

TERADATA ASTER DATABASE ®»Teradata 15.0

ANALYTIC

SOURCES
TOOLS & APPS

Teradata QueryGrid Teradata-Hadoop

» Bi-directional data movement
» Read and write data to Hadoop
» Create new table in Hadoop or insert records

» Query push-down
» Fxecute query on Hadoop

» Qualify rows and columns to reduce data returned

» Fasy configuration and simplified queries
» Create “Hadoop server” definition once

» Jse @foreign_server name to access Hadoop

History of Presto

Wait
between
stages —<

Hive Presto

All stages are pipelined
+ Reduced wait time
* No Fault Tolerance

Memory-to-memory

Data transfer

* Nodisc IO

* Data chunk must
fit in memory

Write to Disk
* Fault Tolerance
 |O Overhead

Presto at a Glance

» \Written in Java
» [100% ANSI SQL godl

= Numerous built-in functions
» \Window functions
» Array/map support
» Plug-in architecture
® Join across data stores
» Hive, Cassandra, Kafka, MySQL
» Amazon S3

» Jses Hive metastore
®» Bytecode query compilation
®» Approximate queries

®» Return X% sample rows
® | mitafions
» Manual join SQL ordering
®» Non-equi joins not supported
= Not YARN enabled
» NO Avro support
» No spill-to-disk

Presto Pipeline Architecture

Metadata : Data Location
. Parser
Client / Planner Scheduler
analyzer

Worker

=D DS

Presto Connectors

C“enI Presto Coordino’ror
i)
ad &
Presto worker Presto worker /\ Presto worker Presto worker

s 23 53
AN

MySsolL®

O &

cassandra IVE

/

Github: Presto Plug-in Connectors

= Hive tables and HCatalog
= Apache Cassandra
= Apache Kafka

» Kafka topics = Presto tables, messages = rows
» MySQL

» Single node access only -- no sharding
» Postgres

» Single node access only
= HBase

» Not released

Cloudera Impala

SQL-on-Hadoop Tutorial

Query execution at the high level

SQL App
Hive Metastore Statestore Catalog
ODBC

QL request

Results

Impalad

Impalad Impalad

Query Executor

Query Executor Query Executor

Query Planning: Distributed Plans

at HDFS DN

Single-Node
Plan

hash at HBase RS

t1.custid
at coordinator

Broadcast

<

Execution Engine

» \Written in C++ for minimal cycle and memory overhead
®| everages decades of parallel DB research
» Parfitioned parallelism
»Pipelined relational operators
®»Baftch-af-a-time runtime
»Focussed on speed and efficiency
®|nfrinsics/machine code for text parsing, hashing, efc.
»Runtime code generation with LLVM

Runtime Code Generation

®» Jses llvm To jit-compile the runtime-intensive parts of
a query

» Fffect the same as custom-coding a query:
®» Remove branches, unroll loops
®» Propagate constants, offsets, pointers, etc.
® |nline function calls

» Optimized execution for modern CPUs (insfruction
pipelines)

Runtime Code Generation — Example

IntVal my_func(const IntVal& v1, const IntVal& v2) {
return IntVal(vl.val * 7 / v2.val);

}
SELECT my func(coll + 10, col2) FROM ...

function

pointer
function function
pointer pointer

(col1 + 10) * 7 / col?2

function function
pointer pointer

interpreted codegen’ d

Impala Runtime Code Generation - Performance

10 node cluster (12 disks / 48GB RAM / 8 cores per node)
~40 GB / ~60M row Avro dataset

N
(@)

B Codegen Off
HCodegen On

Query Time (sec)
N w
O O

—
)

, .]

select count(*) select TPC-H Q1
from lineitem count(l_orderkey)

Codegen is not the panacead!

TPC-H 300GB,10-node cluster TPC-DS 500GB,10-node cluster
SA 250%
BCG/NoCG uCG/NoCG
P00% 200%
150% 150%
100% 100%
50% 50%
0% o B srho s B DR e TN e (e o e B 0% ONOTNOONNNOD DO OWDNODD DD O D
0000000005 566600000000 589833336666988685°9665985583

Resource Management in Impalo

» Admission control and Yarn-based RM cater to different workloads
» Jse admission control for:

= Low-latency, high-throughput workloads

= Mostly running Impala, or resource partitioning is feasible
= Use Llama/Yarn for:

= Mixed workloads (Impala, MR, Spark, ...) and resource partitioning is
impractical

= Latency and throughput SLAs are relatively relaxed

Roadmap: Impala 2.3+

» Nested data: Structs, arrays, maps in Parquet, Avro, JSON, ...
®» Nafural extension of SQL: expose nested structures as tables
®» No [imitation on nesting levels or number of nested fields in single query

®» Mulfithreaded execution past scan operator
®» Resource management and admission control

» [ow-latency, high-throughput mixed workloads without resource
partitioning

» More SQL: ROLLUP/GROUPING SETS, INTERSECT/MINUS, MERGE
®» |mproved guery planning, using statistics
» Physical funing

bis: Scaling the Python Data Experience

Nttp://www.ibis-project.org/

Target user:
Data scientists and data engineers (“Python data users’)

Goals:

Mirror single-node Python experience, maximize productivity
Complete support for SQL engines with Pandas-like APl (same
designer)

High-performance Python user-defined functions

Integration with Python data ecosystem / libraries

Visualization Tools In-memory Analytics

S,

Ibis

Ibis Data Expressions User-defined Functions Third-party Libraries

N
\} Gre [

Python
User
Interface

Storage/
Compute

Ibis/Impala Joint Roadmap

More natural data modeling
« Complex types support

Integration with full Python data ecosystem
« Advanced analytics + machine learning
* Enable use of performance computing tools

User extensibility with native performance
* |In-memory columnar format
* Python-to-LLVM IR compilation

Workflow and usability tools

Academic Challenge

» Code at github (https://aithub.com/cloudera/Impala/)
» |mpala Developer Docker Images & Chef scripfts

®» Nitps://reqgistry.hub.docker.com/u/cloudera/impala-dev/

»Minimal (/GB) — ready to compile, latest code
»Default (33GB) — includes test data, e.g. TPC-H

» Shout out to Spyros Blanas (Ohio State)
»nhitp://web.cse.ohio-state.edu/~sblanas/5242/

» |mpala JIRAS, ramp-up tasks

Big SQL - Architecture

» Head (coordinator) node
» Compiles and optimizes the query

» Coordinates the execution of the query
» Big SQL worker processes reside on compute nodes (some or all)
» Worker nodes stream data between each other as needed

3) D,
3
Big SQL Name Node o0 0 Job Tracker
Mgmt Node { Mgmt Node Mgmt Node Mgmt Node
) % v
Task Big Task Big Task Big Task Big
Tracker DELE NEe SQL Tracker Detgpies SQL Tracker BEIE e SQL 00 Tracker BETE) (et SQL
Compute Node Compute Node Compute Node Compute Node

HDFS

For common table formats a native I/O engine is utilized
» c. g. delimited, RC, SEQ, Parquet, ...

For all others, a java I/O engine is used
» Maximizes compatibility with existing tables

» Allows for custom file formats and SerDe's

All Big SQL built-in functions are native code

Customer built UDF's can be developed in C++ or Java

Big SQL — Architecture (cont.)

Big SQL

Mgmt Node

Task

Big

| | Fracker ||Pat@ Nodeff o)

Comnuto Naodo /

Big SQL Worker

|

Native UDFs
Runtime I I
Java UDFs
)
Native 1/0 Java I/O
Engine Engine

Big SQL works with Hadoop

» Al data is Hadoop data
» |n files in HDFS
» SEQ, ORC, delimited, Parguet ...

®» Never need to copy data to a proprietary representation

» All data is catalog-ed in the Hive metastore
®» |t s the Haodoop catalog

» [|f |s flexible and extensible

Scheduler Service

» The scheduleris the main RDBMSeHadoop service interface

» |nterfaces with Hive metastore for table metadata

» SQL compiler ask it for some "hadoop" metadata, such as partitioning columns

» Acfts like the MapReduce job fracker for Big SQL

» Big SQL provides query predicates for scheduler to perform partition elimination

» Determines splits for each “table” involved in the query

» Schedules splits on available Big SQL nodes
(with best effort data locality)

» Decides which /O library to use and serves
work (splits) to them
» Coordinates “commits” after INSERTs

Big SQL Big SQL
Master Node "| Scheduler <
Hive
e 11 22 P
Management Node Vigmt Node
> ——
Big SQL B
Worker Node

Native § Java H

/10 /0

UDF
FMP

MRTask
Tracker

Query Rewrite

®» There are many ways to express the same query

» Query generators often produce suboptimal queries and don't permit "hand
optimization”

» Complex queries often result in redundancy, especially with views

= Forlarge data volumes optimal access plans more crucial as penalty for poor
planning is greater

select sum(l_extendedprice) / 7.0 as avg_yearly
from temp (I_quantity, avgquantity,
as
ntity, avg(l_quantity) over
y |_partkey)
nfity, |_extenedprice
eitem, tpcd.part
“Partkey = |_partkey

and p_brand = 'BRAND#23'

and p_container = '"MED BOX)
where |_quantity < 0.2 * avgquantity

select sum(l_extendedprice) /7.0
ﬁ;%{gggy"neﬁem 1o * Query correlation eliminated
where p_partkey = |_g * Lineitem table accessed only once
and p_brand = 'Br¢ : : : |
and p_container 3 Execution time reduced in half!
and |_quantity < (select 0.2 *
avg(l_quantity) from
tpcd.lineitem
where |_partkey = p_partkey);

Cost-based Optimization O E N

?TQ 8()a+08 3?;§§£§7
»Few extensions required to the Cost Model T G
« 9 (12) (20)

»Scan operator cost model extended to evaluate SR o

cost of reading from Hadoop S e m

(10) (13) (21)

» # of files, size of files, # of partitions, # of T e e
nodes e o

» Data not hash partitioned on a particular columns T e
(aka “Scattered partitioned”) Lon do

1060 1060
| |

»New parallel join strategy ke

TABLE: TPCH5TB_PARQ
(16) CUSTOMER
114241 Q5

»Every node read data from HDFS, instead of

|
i,

one reading and broadcasting

114241
1060

»Optimizer now knows in which subset of nodes the i

GRPBY

data resides => better costing! Co

114241
1060

»-Sophisticated statistics for cardinality estimation

TBSCAN

1

(19)
113931

1060

|
7.5e+08

TABLE: TPCH5TB_PARQ
CUSTOMER
Q2

Statistics

» Big SQL utilizes Hive staftistics collection with
some extensions:

» Additional support for column groups,
histograms and frequent values

» Automatic determination of partitions
that require staftistics collection vs.
explicit

» Pgrfitioned tables: added table-level
versions of NDV, Min, Max, Null count,
Average column length

» Hive catalogs as well as database
engine catalogs are also populated

» \We are restructuring the relevant code
for submission back to Hive

» Capability for statistic fabrication if no stats
available at compile time

Table statistics
* Cardinality (count)
* Number of Files
* Total File Size

Column statistics
* Minimum value (all types)
* Maximum value (all types)
« Cardinality (non-nulls)

* Distribution (Number of Distinct Values
NDV)

* Number of null values

* Average Length of the column value (all

types)
 Histogram - Number of buckets configurable

* Frequent Values (MFV) — Number
configurable

Column group statistics

Big SQL supports HBase tables

» Big SQL with HBase — basic operations
— Create tables and views
— LOAD / INSERT data
— Query data with full SQL breadth

» HBase-specific design points
®» Column mapping
®» Dense / composite columns
— FORCE KEY UNIQUE option

— Secondary indexes

Big SQL works under YARN

» Big SQL integrates with YARN via the Data Access
Slider project

» YARN chooses suitable hosts for Big SQL
worker nodes

» Big SQL resources are accounted for by
YARN

» Size of the Big SQL cluster may
dynamically grow or shrink as needed

» Configured by user (not by installation
default)

» More Big SQL workers are added when
more resources are needed Data Management

» When demand wears off, Big SQL workers
are shut down

Summary

Big SQL provides rich, robust, standards-based SQL support for data stored in HDFS and HBase
» Uses IBM common client ODBC/JDBC drivers

Big SQL fully integrates with SQL applications and tools
» [Existing queries run with no or few modifications*
» [Existing JDBC and ODBC compliant tools can be leveraged

Big SQL provides faster and more reliable performance
» Big SQL uses more efficient access paths to the data

» Big SQL is optimized to more efficiently move data over the network

» Big SQL is capable of executing all 22 TPC-H and all 99 TPC-DS queries without modification

Big SQL provides and enterprise grade data management

» Security, Auditing, workload management ...

SparkSQL

SQL-on-Hadoop Tutorial

What is so great about Spark?

We believe that Spark i1s the first system that allows a
veneral-purpose programming languagelto be used at in-

teractive speeds for in-memory data mining on clusters.

From: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

OK, but what exactly is Sparke

» Distributed data analytics engine, generalizing Map Reduce

» Core engine, with streaming, SQL, machine learning, and graph processing modules

Streig
real-time

machine

learning

Spark Core

Spark Core:
RDDs, Transformations & Actions

» RDDs
» Distributed collection of objects

»Can be cached in memory
»Built via parallel fransformations (map, filter, ...)
» Automatically rebuilt on failure based on lineage

»DAGs of RDDs and Transtormations can be (lazily)
executed via actions

»Examples: Export o HDFS, count numlber of objects

Spark’s DAG Execution

. - . -~ - ~ '
’\ : : :‘. r : -
| . -
| i
| :
‘ﬁ
; f
- - N /

, groupBy

take :

SQL-on-Hadoop Tutorial 9/28/15

Why Application Developers love Spark

» Building a real-world big data application without and with Spark:

HDFS HDFS

write read
o pyt hon Interactive

W|th Spark .
analysis
HDFS _— =Scala
d
rea \ i .

HDFS HDFS ' § HDFS
write read 5 write

£
M®
L.
-+

An Example App

Raw JSON Tweefts Streaming

Machine
Learning

O
O
w
O
o
-
o
2
i

import org.apache.spark.sql.

val ctx = new org.apache.spark.sql.SQLContext(sc)

val tweets = sc.textFile("hdfs:/twitter")

val tweetTable = JsonTable.fromRDD(sqlContext, tweets, Some(0.1))
tweetTable.registerAsTable("tweetTable")

ctx.sql("SELECT text FROM tweetTable LIMIT 5").collect.foreach(println)
ctx.sql("SELECT lang, COUNT(*) AS cnt FROM tweetTable \

GROUP BY lang ORDER BY cnt DESC LIMIT 10").collect.foreach(println)
val texts = sql("SELECT text FROM tweetTable").map(_.head.toString)

def featurize(str: String): Vector = { ... }
val vectors = texts.map(featurize).cache()
val model = KMeans.train(vectors, 10, 10)

sc.makeRDD(model.clusterCenters, 10).saveAsObjectFile("hdfs:/model™)
val ssc = new StreamingContext(new SparkConf(), Seconds(1))

val model = new KMeansModel(
ssc.sparkContext.objectFile(modelFile).collect())

val tweets = TwitterUtils.createStream(ssc,)
val statuses = tweets.map(.getText)
val filteredTweets = statuses.filter {

t => model.predict(featurize(t)) == clusterNumber

}
filteredTweets.print()

ssc.start()

Why SparkSQL<e

= SQL, SQL, SQL, ...

» Databricks says that 100% of their customers
use some SQL

» Schema is very useful

®Fven in complex pipelines that process a lot
of un/semi-structured data

» Separation of logical from physical plan is critical
for performance and scalabllity

SQL-on-Hadoop Tutorial 9/28/15

Plan Optimization & Execution

Analvsis Logical Physical Code
y Optimization Planning Generation
SQL AST / g
. o Selected
Unresolved __, | ical plan — OPIMiZéd B physical 2 =, ppysical —» RDDs
Logical Plan Logical Plan Plans \ *g Plan
DataFrame O

Catalog

DataFrames and SQL share the same optimization/execution pipeline

DataFrame

1. A distributed collection of rows organized into
named columns

2. An abstraction for selecting, filtering, aggregating
and plotffing structured data (cf. R, Pandas, 1bis)

Catalyst Optimizer: Tree Transformations

®» Developers express free fransformations as PartialFunction[TreeType, TreeType]
1. If the function does apply to an operator, that operator is replaced with the result.
2. When the function does not apply to an operator, that operator is left unchanged.

3. The transformation is applied recursively to all children.

Prior Work: Optimizer Generators

» \/olcano / Cascades:

« Create a custom language for expressing rules that rewrite frees of
relational operators.

« Bulld a compiler that generates executable code for these rules.

An Example Catalyst Transformation

Find filters on top of projections. Original Filter
Plan Push-Down
2. Check that the filter can be _ _
evaluated without the result of the Project Project
3. If so, switch the operators. T
Filter R 1 Project

id =1

N\
N\ /7
. N/
Project AN
. /7 N
id,name /

‘ People ' ‘ People '

id,name

Filter
id =1

Filter Push Down Transformation

val newPlan = queryPlan transform {
case ¥ @ Filter(, p @ Project(, grandChild))
if(f.references subsetOf grandChild.output) =>
p.copy(child = f.copy(child = grandChild)

Community-Contributed Transformations

SPARK-3462 push down filters and projections into Unions

n (o LTT i koeninger wants to merge 3 commits into apache:master from mediacrossinginc:SPARK- 3462
4™ Conversation 15 -0- Commits 3 [#) Files changed 2 +110 -0 NEEEE
Showing 2 changed files with 110 additions and 0 deletions. Unified Split

110 line patch took this user’s query from
“never finishing” to 200s.

Project Tungsten: Getfing Spark to Run
Well on the JVM

» Overcoming JVM limitations:

« Memory Management and Binary Processing:
leveraging application semantics to manage
memory explicitly and eliminate the overhead of
JVM object model and garbage collection

« Cache-aware computation: algorithms and data
stfructures to exploit memory hierarchy

« Code generation: using code generation to exploif
modern compilers and CPUs

The overheads of Java objects

((abcd”

* Native: 4 pyteswith UTF-8 encodin

« Java:

java. lang.String object internals:
OFFSET SIZE TYPE DESCRIPTION

Instance stze: 24 bytes (reported by Instrumentation API)

SQL-on-Hadoop Tutorial

Use sun.misc.Unsafe

» VM internal API
®» Can manipulate memory without safety checks

Tungsten's UnsafeRow format

= Null bits
®» |nline fixed-length values
» Align on 8-byte word boundaries

SQL-on-Hadoop Tutorial 9/28/15

Apache Phoenix

SQL-on-Hadoop Tutorial

The Phoenix Approach

®» SQL compiler and execution engine for HBase

= Query engine transforms SQL into native HBase APIs: put, delete,
parallel scans (instead of, say, MapReduce)

®» Supports features not provided by HBase: Secondary Indexing,
Multi-tenancy, simple Hash Join, etc.

SQL-on-Hadoop Tutorial 9/28/15

Phoenix Architecture

ZK Quorum

Chent fn ity

Rag onar v
i
lookesper

.
\ Clart ronds and
WA fows by
dredtly scdemanyg
Ll : J— - - . P rever ot
R onServer s s p— _,-—"’- S — ,‘ te v g

SQL-on-Hadoop Tutorial 9/28/15

Open (Research) Challenges

SQL-on-Hadoop Tutorial

Challenge 1: Query optimization

» Cost-based optimizer relies on

» Statistics over base relations
» Formulas for cost estimation
» Rules for plan enumeration
» Problems:
» Stats noft reliable, do not own the data
» Prominent use of UDFs
» |ndependence assumption between predicates do not hold
» More nested data, harder to estimate selectivities

» Bad plans over big data may run “forever”

- Defer more cost-based decisions to run-time; robust, adaptive
query optimization

Challenge 2: Multi-framework environment

» NoO single framework owns F— T | —— "
’rhe dCITCI! g SQL rap an Machine

batch learning

» Multiple frameworks, with processing

ifferent resource
' ents

» How fo share the datae

» How to share resourcese

ow to work together
sslye

SQL-on-Hadoop Tutorial 9/28/15

Challenge 3: Transactions and
analytics in one system

» HDFS is a problem for fransactional workloads
» \Workarounds do not lend itself to high-performance OLAP
» Object-stores

® |[nteresting combinations are emerging
»Hive LLAP + Phoenix, Splice Machine + Spark

» Need more fightly integrated solutions

®» Need an updatable, fast, distributed file system

SQL-on-Hadoop Tutorial 9/28/15

References

http://www.slideshare.net/enissoz/hbase-and-hdfs-understanding-filesystem-usage

https://www.mapr.com/blog/in-depth-look-hbase-architecture

Apache Dirill. http://drill.apache.org/.

Apache Phoenix. hitp://phoenix.apache.org/.

Hive on spark. https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark .

Splice machine. http://www.splicemachine.com/.

Teradata query grid. http://www.teradata.com/Teradata- QueryGrid/
#tabbable=0&tab1=0&tab2=0.

M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D.
Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S.
Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. “Impala: A Modern, Open-
Source SQL Engine for Hadoop."” In Proc. CIDR, 2015.

Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson, O. O'Malley, J. Pandey, Y. Yuan, R.
Lee, and X. Zhang. “Major technical advancements in apache hive.” In Proc. SIGMOD, 2014.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

A. Aillamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. “Weaving Relations for Cache
Performance.” In Proc. of the 27th International Conference on Very Large Data Bases, 2001.

Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. “RCFile: A fast and space-efficient
data placement structure in MapReduce-based warehouse systems.” In Proc. of ICDE, 2011.

H. Lim, H. Herodotou, and S. Babu. “Stubby: a transformation-based optimizer for MapReduce
workflows.” PVLDB, 2012.

T. Neumann. “Efficiently compiling efficient query plans for modern hardware.” PVLDB, 2011.

D. Simmen, E. Shekita, and T. Malkemus. “Fundamental fechniques for order optimization.” In
Proc. of ACM SIGMOD, 1996.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, and R. Murthy.”
Hive - A Petabyte Scale Data Warehouse Using Hadoop.” In ICDE, 2010.

T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. “SIMD-scan: ultra fast
iINn- memory table scan using on-chip vector processing units.” PVLDB, 2, 2009.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

V. Raman, G. Aftaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Light-
stone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, |. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A.
Storm, and L. Zhang. “DB2 with BLU Acceleration: So much more than just a column store.”
PVLDB, 6, 2013.

A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz. “HadoopDB: An
Architectural Hybrid of MapReduce and DBMS Technologies for Analytfical Workloads.” PVLDB,
2009.

A. Abouzied, D. J. Abadi, and A. Silberschatz. “Invisible loading: Access-driven data transfer
from raw files info database systems.” In EDBT, 2013.

M. Amburst, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A.
Ghodsi, and M. Zaharia. “Spark SQL: Relational data processing in Spark.” In ACM SIGMOD,
2015.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H.
Shah, S. Seth, B. Saha, C. Curino, O. O'Malley, S. Radia, B. Reed, and E. Baldeschwieler.
Apache Hadoop YARN: Yet another resource negotiator. In SOCC, 2013.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

K. Bajda-Pawlikowski, D. J. Abadi, A. Silberschatz, and E. Paulson. “Efficient processing of data
warehousing queries in a split execution environment.” In ACM SIGMOD, 2011.

P. Boncz. Vortex: Vectorwise goes Hadoop.
http://databasearchitects.blogspot.com/2014/05/vectorwise- goes-hadoop.html.

L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuyv, L. Lonergan, J. Cohen, C. Welton,
G. Sherry, and M. Bhandarkar. “HAWQ: A massively parallel processing SQL engine in hadoop.”
In ACM SIGMOD, 2014.

G. Graefe. "Encapsulation of parallelism in the Volcano query processing system.” In ACM
SIGMOD, 1990.

S. Gray, F. Ozcan, H. Pereyra, B. van der Linden, and A. Zubiri. “IBM Big SQL 3.0: SQL-on-Hadoop
without compromise.” http://public.dhe.iom.com/common/ ssi/fecm/en/sww1401%9usen/
SWW14019USEN.PDF, 2014.

F.Ozcan, D. Hoa, K. S. Beyer, A. Balmin, C. J. Liu, and Y. Li. “Emerging trends in the enterprise
data analyfics: Connecting Hadoop and DB2 warehouse.” In ACM SIGMOD, 2011.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

S. Melnik, A. Gubareyv, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis. “Dremel:
Interactive analysis of web-scale datasets.” PVLDB, 2010.

S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran. “Block oriented processing of
relational database operations in modern computer architectures.” In ICDE, 2001.

B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino. "Apache Tez: A unifying
framework for modeling and building data processing applications.” In ACM SIGMOD, 2015.

P. Seshadri, H. Pirahesh, and T. Y. C. Leung. “Complex query decorrelation.” In ICDE, 1996.

A. Floratou, U. F. Minhas, and F. Ozcan. “SQL-on- Hadoop: Full circle back to shared-nothing
database architectures.” PVLDB 7(12), 2014.

M. Traverso. Presto: Interacting with petabytes of data at Facebook. https://
www.facebook.com/notes/facebook- engineering/presto-interacting-with-petabytes-of-data-
at-facebook/10151786197628920.

S. Wanderman-Milne and N. Li. Runtime code generation in Cloudera Impala. IEEE Data Eng.
Bull., 2014.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. “Shark: SQL and rich
analytics at scale.” In ACM SIGMOD, 2013.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and |. Stoica. “Spark: Cluster computing
with working sets.” In HotCloud, 2010.

C. Zuzarte, H. Pirahesh, W. Ma, Q. Cheng, L. Liu, and K. Wong. “WinMagic : Subquery
elimination using window aggregation.” In ACM SIGMOD, 2003.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. Gruber. “Bigtable: A Distributed Storage System for Structured Data.”, In OSDI 2006

B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Lychagina, Y. Kwon, and M. Wong.
“Tenzing: A SQL Implementation on the MapReduce Framework.” In VLDB 2011.

T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. “MRShare: Sharing Across Multiple
Queries in MapReduce.” In VLDB 2010.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

G. Wang and C.-Y. Chan. “Multi-Query Optimization in MapReduce Framework.” In VLDB, 2013.

F. Afrati and J. Ullman. “Optimizing Multiway Joins in a Map-Reduce Environment.” In TKDE
2011.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. “SkewTune: Mitigating Skew in MapReduce
Applications.” In SIGMOD 2012.

M. Eltabakh, F. Ozcan, Y. Sismanis, P. J. Haas, H. Pirahesh, and J. Vondrak, “Eagle-eyed
elephant: split-oriented indexing in Hadoop”, in EDBT 2014.

M. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and J. McPherson, “CoHadoop: Flexible
Data Placement and Its Exploitation in Hadoop”, in PVLDB 4(9), 2011.

J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Ozcan, “Clash of the Titans:
MapReduce vs. Spark for Large Scale Data Analytics” in PVLDB 8(13), 2015

J. Dittrich, J-A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad, “Hadoop++: Making a
Yellos Elephant Run Like a Cheetah (without it even noticing)”, in PVLDB 3(1-2), 2010.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The Performance of MapReduce: An In-depth Study”, in
PVLDB 3(1-2), 2010.

D. J. DeWitt, R. V. Nehme, S. Shankar, J. Aguilar-Saborit, A. Avanes, M. Flasza, and J. Gramling,
“Split Query Processing in Polybase”, in SIGMOD 2013.

M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin,
“MapReduce and parallel DBMSs: Friends or Foese” CACM, 53(1):64-71, 2010.

A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, “*Column-oriented Storage Techniques for
MapReduce”, in PVLDB, 4(7):419-429, 2011

S. Harris, A. Sundararajan, E. Branish, and K. Chen, “Blistering Fast SQL Access to Hadoop using
IBM Biglnsights 3.0 with Big SQL 3.0"

S. Blanas and et al., YA comparison of join algorithms for log processing in mapreduce”, in
SIGMOD 2010.

SQL-on-Hadoop Tutorial 9/28/15

References (cont.)

» HDFS caching, http://hadoop.apache.org/docs/current/hadoopproject-dist/hadoop-hdfs/
CentralizedCacheManagement.htmil.

» S. Babu and H. Herodotou, “Massively Parallel Databases and MapReduce Systems”, in
Foundations and Trends in Databases 5(1), 2013.

» N. Bruno, Y. Kwon, and M-C Wu, "Advanced Join Strategies for Large-Scale Distributed
Computation”, in PVLDB 7(13), 2014

» K. Karanasos, A. Balmin, M. Kutsch, F. Ozcan, V. Ercegovac, C. Xia, and J. Jackson,
“Dynamically optimizing queries over large scale data platforms”, in SIGMOD 2014

» J Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, in
OSDI 2004.

SQL-on-Hadoop Tutorial 9/28/15

Thank you!

